Evaluation of solid waste treatment methods in Libya by using the analytic hierarchy process

  • Ibrahim Badi Misurata University, Faculty of Engineering, Mechanical Engineering Department, Libya
  • Ali Abdulshahed Misurata University, Faculty of Engineering, Industrial Engineering Department, Libya
  • Ali Shetwan Misurata University, Faculty of Engineering, Electrical Engineering Department, Libya
  • Wisam Eltayeb Misurata University, Faculty of Engineering, Industrial Engineering Department, Libya
Keywords: Waste management, multi-criteria evaluation, AHP, Libya


Evaluation and selection of the appropriate method for solid waste treatment (SWT) in Libya are a complex problem and require an extensive evaluation process. This is because it is very difficult to develop a selection criterion that can precisely describe the preference of one method over another. Waste management is the collection, transport, treatment, recycling or disposal and monitoring waste materials. In this paper, four treatment systems for waste management in Libya are evaluated using the analytic hierarchy process (AHP) in respect to four main criteria and twenty-two sub-criteria. The treatment systems for waste management are anaerobic digestion, landfilling, incineration and compost. The selected criteria used in the evaluation of four treatment systems are environmental impacts, socio-cultural aspects, technical aspects and economic aspects. According to the evaluation, anaerobic digestion ranks the highest in classification in Libya. Compost ranks higher than landfilling and incineration. Furthermore, it should be noted that the rank of waste treatment systems can be changed according to the future technological developments.


Download data is not yet available.


Abdelsalam O., Gebril, A.O., Kadir Pakir, A.H., & Hamidi Abdul, A. (2010). Municipal solid waste management in benghazi (Libya): Current practices and challenges. Environmental Engineering and Management, 9(9), 1289-1296.

Abduelmajid, N., Mohamed, E., Faiz, B., & Fawzia, G. (2015). Estimation of polyvinylchloride (PVC) in household solid waste at Tripoli-Libya: A case study. Scientific reviews and chemical communications, 5(2), 51-56.

Ali, A.O.G. (2013). Solid waste pollution and the importance of environmental planning in managing and preserving the public environment in Benghazi city and its surrounding areas. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 7(12), 924-930.

Aljaradin, M. (2014). Solid Waste Management in Jordan. International Journal of Academic Research in Business and Social Sciences, 4(11), 138-150. DOI: https://doi.org/10.6007/IJARBSS/v4-i11/1289

Babalola, M. A. (2015). A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan. Environments, 2, 471-488. DOI: https://doi.org/10.3390/environments2040471

Badi, I., Sawalem, M., & Shetwan, A. (2016). Feasibility study of waste incineration plant in the city of Misrata-Libya. International Journal of engineering sciences & research technology, 5(2), 153-159.

Chai, J., Liu, J.N., & Ngai, E.W. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872-3885. DOI: https://doi.org/10.1016/j.eswa.2012.12.040

Charles, W., Walker, L., & Cord-Ruwisch, R. (2009). Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresource technology, 100, 2329–2335. DOI: https://doi.org/10.1016/j.biortech.2008.11.051

Chatterjee, K., Pamucar, D., & Zavadskas, E.K. (2018). Evaluating the performance of suppliers based on using the R'AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of cleaner production, 184, 101-129. DOI: https://doi.org/10.1016/j.jclepro.2018.02.186

Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99, 4044–4064. DOI: https://doi.org/10.1016/j.biortech.2007.01.057

Defr, A. (2007). Incineration of Municipal Solid Waste. UK: Department for Environment, Food & Rural Affairs.

Devi, K., Yadav, S. P., & Kumar, S. (2009). Extension of Fuzzy TOPSIS Method Based on Vague Sets. International journal of computational cognition, 14(1), 78-84.

EPA-CICA. (2003). Air Pollution Control Technology Fact Sheet Thermal Incinerator EPA-452/F-03-022.

Generowicz, A., Kulczycka, J., Kowalski, Z., & Banach, M. (2011). Assessment of waste management technology using BATNEEC options, technology quality method and multi-criteria analysis. Journal of Environmental Management and Tourism, 92, 1314-1320. DOI: https://doi.org/10.1016/j.jenvman.2010.12.016

Hamad, T. A., Agii, A. A., Hamad, Y., & Sheffield, J. W. (2014). Solid waste as renewable source of energy: current and future possibility in Libya. Case Studies in Thermal Engineering, 4(2), 144-152. DOI: https://doi.org/10.1016/j.csite.2014.09.004

ICAC. (1999). Control Technology Information - Thermal Oxidation. https://www.epa.gov/air-emissions-monitoring-knowledge-base/monitoring-control-technique-thermal-oxidizer, Accessed 13 March 2017.

Javaheri, H., Nasrabadi, T., Jafarian, M. H., Rowshan, G. R., & Khoshnam, H. (2006). Site selection of municipal solid waste landfill using analytical hierarchy process method in a geographical information technology environment in Giroft. Iranian journal of environmental health science and engineering, 3(3), 177-184.

Jovanović, S., Jovičić, N., Bošković, G., Savić, S., & Đorđević, Z. (2016). Selection of the optimal system for municipal solid waste management by integrated application of LCA and MCDM methods. Paper presented at the 1st International conference on Quality of Life Faculty of Engineering, University of Kragujevac.

Karami, A. (2011). Utilization and comparison of multi attribute decision making techniques to rank Bayesian network options. (Master Thesis), University of Skovde, Sweden.

Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31, 1737-1744. DOI: https://doi.org/10.1016/j.wasman.2011.03.021

Khan, S., & Faisal, M. N. (2008). An analytic network process model for municipal solid waste disposal options. Waste Management, 28 1500–1508. DOI: https://doi.org/10.1016/j.wasman.2007.06.015

Ladan, S. I. (2014). Composting as a sustainable waste management method in Katsina Metropolis, northern Nigeria. International Journal of Bioscience, Biochemistry and Bioinformatics, 4(1), 11-13. DOI: https://doi.org/10.7763/IJBBB.2014.V4.301

Manaf, L.A., Samah, M.A.A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: Practices and challenges. Waste Management, 29, 2902–2906. DOI: https://doi.org/10.1016/j.wasman.2008.07.015

Norkhadijah, S., Ismail, S., & Manaf, L. A. (2013). The challenge of future landfill: A case study of Malaysia. Journal of Toxicology and Environmental Health Sciences, 5(6), 86-96. DOI: https://doi.org/10.5897/JTEHS12.058

Omran, A., Altawati, M., & Davis, G. (2017). Identifying municipal solid waste management opportunities in Al-Bayda City, Libya. Environment, Development and Sustainability, 95(3), 1-17.

Pamučar, D., Lukovac, V., Božanić, D., & Komazec, N. (2018a). Multi-criteria FUCOM-MAIRCA model for the evaluation of level crossings: case study in the Republic of Serbia. Operational Research in Engineering Sciences: Theory and Applications, 1(1), 108-129.

Pamučar, D., Stević, Ž., & Sremac, S. (2018b). A new model for determining weight coefficients of criteria in mcdm models: Full consistency method (FUCOM). Symmetry, 10(9), 393.

Saaty, T. L. (1979). Applications of analytical hierarchies. Mathematics and Computers in Simulation, 21, 1-20. DOI: https://doi.org/10.1016/0378-4754(79)90101-0

Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: Mc Graw‐Hill. DOI: https://doi.org/10.21236/ADA214804

Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48, 9-26. DOI: https://doi.org/10.1016/0377-2217(90)90057-I

Saaty, T. L., & Vargas, L. G. (2001). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Boston, MA, USA: Kluwer Academic Publishers. DOI: https://doi.org/10.1007/978-1-4615-1665-1

Sawalem, M., E. Selic, & J.D. Herbell. (2009). Hospital waste management in Libya: A case study. Waste management. 29(4), 1370-1375. DOI: https://doi.org/10.1016/j.wasman.2008.08.028

Stević, Ž., Pamučar, D., Vasiljević, M., Stojić, G., & Korica, S. (2017). Novel integrated multi-criteria model for supplier selection: Case study construction company. Symmetry, 9(11), 279. DOI: https://doi.org/10.3390/sym9110279

Tabasi, R., & Marthandan, G. (2013). Clinical waste management: A review on important factors in clinical waste generation rate. International Journal of Science and Technology, 3(3), 194-200.

Thompson-Smeddle, L. (2011). Solid waste management city of Cape Town Smart Living Handbook. (4th ed.). Cape Town: City of Cape Town.

How to Cite
Badi, I., Abdulshahed, A., Shetwan, A., & Eltayeb, W. (2019). Evaluation of solid waste treatment methods in Libya by using the analytic hierarchy process. Decision Making: Applications in Management and Engineering, 2(2), 19-35. https://doi.org/10.31181/dmame1902038b